

Reduktionen im neuen amtlichen UTM-Lagebezugssystem in der ingenieurgeodätischen Praxis


Dr.-Ing. Peter Wasmeier

Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Geodäsie

München, 12. März 2018

Wichtigste Quellen

Runder Tisch GIS e.V. Leitfaden Bezugssystemwechsel auf ETRS89 / UTM

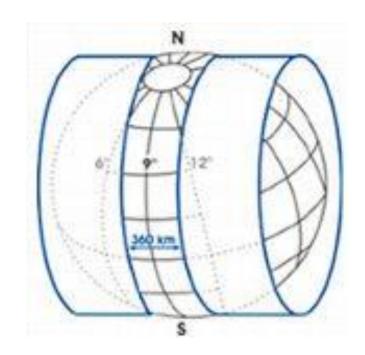
Volker Schwieger Berücksichtigung der systembedingten Strecken- und Flächen-

verzerrungen bei Ingenieurvermessungen

(LGL-Forum 6.11.2017)

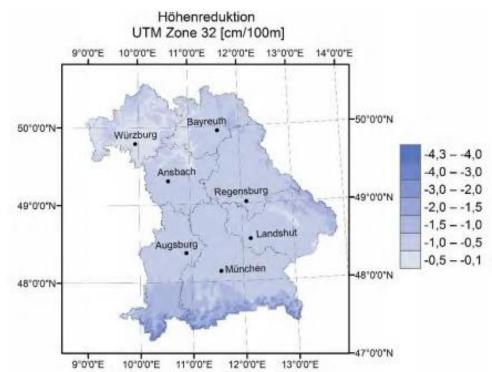
Otto Heunecke Planung und Umsetzung von Bauvorhaben mit amtlichen Lage- und

Höhenkoordinaten


(ZfV 3/2017)

Grundlagen der UTM-Abbildung

- Transversale Mercator-Projektion mit Schnittzylinder
- Stauchung des Mittelmeridians um Faktor 0,9996
- ~ 6° breite Meridianstreifen (am Äquator)
- Bezugsmeridiane in D: 3° 9° 15°
- Verläuft von 80° süd bis 84° nord
- Geschnitten wird das GRS80-Ellipsoid



• Streckenreduktion wegen Höhe

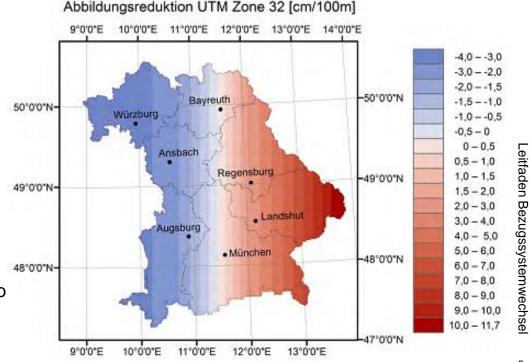
$$m_h = 1 - \frac{h_{ell}}{R + h_{ell}}$$
 oder direkt

$$S_0 = \sqrt{\frac{s^2 - (h_2 - h_1)^2}{\left(1 + \frac{h_1}{R}\right) + \left(1 + \frac{h_2}{R}\right)}}$$

Alle abgebildeten Strecken werden in Bayern kürzer

Leitfaden Bezugssystemwechsel

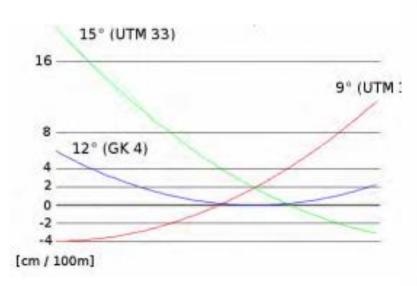
Streckenreduktion wegen Projektion

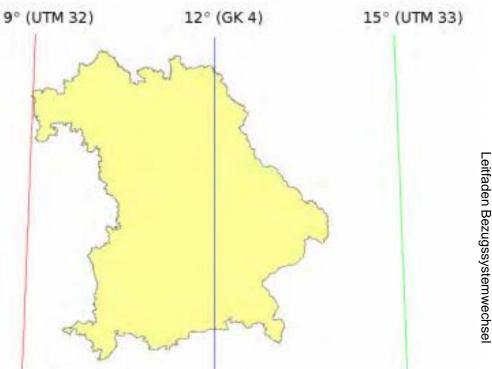

$$s = S m_o \left[1 + \frac{y^2}{2 R^2} \right]$$

mit R = mittlerer Krümmungsradius, ~ 6381 km

y = Abstand vom Zentralmeridian

 m_0 = Maßstabsfaktor am Zentralmeridian, 0.9996


Abgebildete Strecken bis 180 km vom Zentralmeridian werden kürzer, außerhalb deutlich länger



Streckenreduktion wegen Projektion

Flächenreduktion wegen Projektion und Höhe

direkt abhängig von den Streckenreduktionen

Richtungsreduktion

$$\delta T = T - t$$
 $T = \text{ellipsoidischer Riwi}$ $t = \text{abgebildeter Riwi}$

 $\Delta x = Hochwertunterschied$

R_B = mittlerer Krümmungsradius

$$\delta t [\text{mgon}] = \frac{y_m \cdot \Delta x}{2 \cdot R_R^2} \rho^{mgon}$$

Beispiel:

für $\Delta x = 5$ km am Zonenrand ist $\delta T = 0.9$ mgon

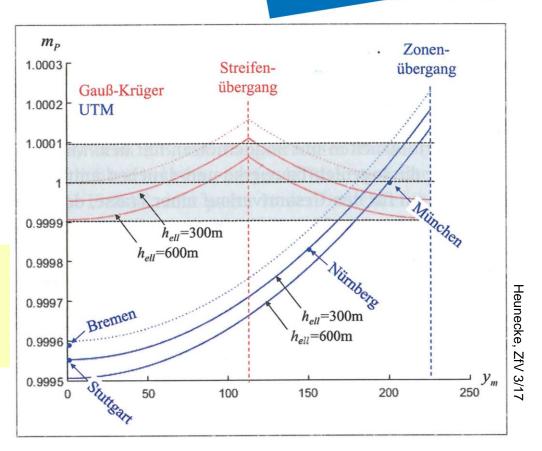
Was ändert sich dadurch?

→ Zuerst mal müssen wir die amtlichen Höhen berücksichtigen...

Beim GRS80 betragen die Höhenunterschiede zwischen Quasigeoid und Ellipsoid zwischen +34 m an der Küste und +50 m in den Alpen.

- → Rechnung mit ellipsoidischen Höhen: Maßstabsfehler von -5 ppm bis -8 ppm
- → Bisher mit Bessel: < 1 ppm</p>

Quasigeoid-Höhen müssen als Mittelwert im Messgebiet berücksichtigt werden!



Was ändert sich dadurch?

Innerhalb der Schnittkreise des TM-Zylinders addieren sich die Einflüsse von Höhen- und Projektionsreduktion

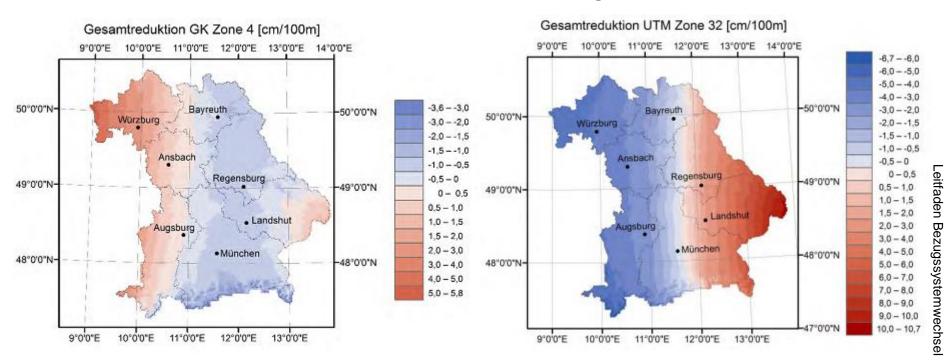
Grauer Bereich: < 1 cm / 100 m

- → Bisher mit Bessel: gegenteilige Auswirkung, teilweise annähernde Aufhebung
- → München liegt zufällig "sehr günstig"

Warum ist das plötzlich alles so wichtig?

Planunterlagen (vor allem auch im BIM) werden in einem lokalen topozentrischen System im Maßstab 1:1 erstellt und sollen auch so abgesteckt werden

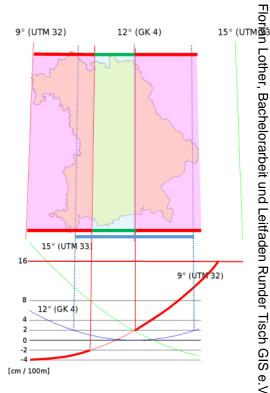
Anschlusspunkte in den Planungsunterlagen liegen aber mit UTM-Koordinaten vor


→ Die geplante, "reale" Strecke zwischen zwei Punkten ist anders als die Strecke im UTM-System

War das nicht mit GK auch schon so?

Ja, aber die Unterschiede waren deutlich geringer...

Warum ist das plötzlich alles so wichtig?



Warum ist das plötzlich alles so wichtig?

Beispielorte in Bayern

Nach den Mindestanforderungen der Gebäudeübernahmeverordnung (GÜVO) kann für die grün markierten Ort auf eine Korrektur verzichtet werden.

Stadt	Maßstab	m [ppm]
München	0,9999845	15
Bayreuth	0,9999669	33
Regensburg	1,0001541	154
Landshut	1,0001781	178
Augsburg	0,9997623	238
Ansbach	0,9996965	303
Würzburg	0,9996129	387
Aschaffenburg	0,9995816	418
Wettzell	1,0005463	546
Zugspitze	0,9994139	586
Passau	1,0008798	880
Wegscheid	1,0010720	1072

150 Jahre culture of excellence

Und was machen wir jetzt?

Bei einem lokal begrenzten Gebiet

- Es reicht die Verwendung eines mittleren Projektmaßstabs (wo notwendig)
- Richtungsreduktionen sind nicht notwendig

Bei einem langgestreckten Gebiet

Reicht ein Maßstab für das Projekt?

Bei 200 km Abstand vom Bezugsmeridian ändert sich der Maßstab entlang einer 5 km Strecke um 24,5 ppm

→ der 1. km ist 2 cm kürzer als der 5. km

Y [km]	0	50	100	113	150	200	226
ppm/km	0,0	1,2	2,4	2,8	3,7	4,9	5,5

Quelle: Heckmann (2011), Gauß-Krüger und UTM – Gemeinsamkeiten und Unterschiede beider Abbildungen

Richtungsreduktionen sind auch hier überwiegend nicht notwendig, aber <u>Erdkrümmungskorrekturen!</u>

150 Jahre culture of excellence

Und was machen wir jetzt?

<u>Lösungsmöglichkeit A:</u> Wir passen die Planung an

- Anpassung der 1:1 Planung mittels des Projektmaßstabs ins UTM-System
- Absteckung / Aufnahme direkt im UTM-System mit gegebenen amtlichen Planungsunterlagen und allen bekannten Reduktionen / bei GNSS ins UTM-System
 - → es entstehen in der Örtlichkeit die geplanten 1:1 Maße und nicht die UTM-Maße
- Am Ende werden die UTM-Messungen wieder mit dem Projektmaßstab in die Planung überführt
- Der Planer oder der Geodät? Die Planungstools / BIM-Programme müssen die Maßstabsänderung in der Planung unterstützen.
 - → für BIM sind entsprechende Eigenschaften geplant

Und was machen wir jetzt?

Lösungsmöglichkeit B: Wir passen die amtlichen Unterlagen an

- Anpassung der UTM-Unterlagen mittels des Projektmaßstabs ins lokale Planungssystem
- Absteckung / Aufnahme direkt im 1:1-Planungssystem mit den geänderten Planungsunterlagen ohne Reduktionen (nur mit EDM-Korrekturen) / bei GNSS in ein lokales System
 - → es entstehen in der Örtlichkeit die geplanten 1:1 Maße und nicht die UTM-Maße
- Am Ende werden die Messungen wieder mit dem Projektmaßstab nach UTM überführt und können in die amtlichen Unterlagen integriert werden
- Unter Umständen sehr viele amtliche und Fachdaten aus unterschiedlichen Quellen zu überführen

Und was machen wir jetzt?

In jedem Fall: die Vorgehensweise muss deutlich kommuniziert werden!

Bei Planunterlagen:

- Angabe des lokalen Maßstabs
- Deutliche Kennzeichnung, wenn externe Datensätze angepasst wurden (z.B. DFK als Hintergrund)

In Berichten, Textteilen zu Plänen:

- Standardmäßig einführendes Kapitel zur Anwendung eines lokalen Maßstabs
- Am Besten mit einem Rechenbeispiel
- → Eine einheitliche Kommunikationsvorgabe seitens der Verbände ist wünschenswert

Zusammenfassung

- Die Projektion kennen wir von GK, aber bei UTM sind die Auswirkungen deutlich größer
- Bei großen Projekten ist zu berücksichtigen, dass der Maßstab nicht konstant ist, sondern sich mit bis zu 5,5 ppm / km ändern kann
- Wir müssen also transformieren, wenn wir UTM-Planungsunterlagen und einen CAD-Plan kombinieren wollen:
 - → entweder wir messen im UTM-System und müssen die Planung anpassen oder
 - → wir messen im Planungssystem und müssen vorher alle UTM-Koordinaten anpassen

Wichtig: Die Instrumente (TPS/GNSS) müssen so eingestellt sein, dass sie zu unserem Vorgehen passen und wir müssen <u>deutlich dokumentieren!</u>